# roc-multiclass **Repository Path**: mirrors_mljs/roc-multiclass ## Basic Information - **Project Name**: roc-multiclass - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-22 - **Last Updated**: 2026-02-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ROC - Receiver Operating Characteristic for multiple class [![NPM version][npm-image]][npm-url] [![build status][ci-image]][ci-url] [![Test coverage][codecov-image]][codecov-url] [![npm download][download-image]][download-url] A receiver operating characteristic (ROC) curve aims to summarize the performance of a binary classifier system as its discrimination threshold is varied. The multiple class option allows to handle systems with more than two classes.

## Installation `$ npm i ml-roc-multiclass` ## Usage ```js import { getRocCurve, getAuc, getClasses } from 'ml-roc-multiclass'; const targets = [ 'class1', 'class1', 'class1', 'class1', 'class2', 'class2', 'class2', 'class2', ]; const predictions = [0.95, 0.15, 0.13, 0.08, 0.93, 0.91, 1.99, 0.12]; const classes = getClasses(targets); // console.log(classes); // [ // { // "class":"class1", // "value":0, // "ids":[0,1,2,3] // }, // { // "class":"class2", // "value":1, // "ids":[4,5,6,7] // } // ] const curve = getRocCurve(targets, predictions); // console.log(curve); // [ // { // "sensitivities": [1, 1, 0.75, 0.75, 0.75, 0.5, 0.25, 0.25, 0], // "specificities": [0, 0.25, 0.25, 0.5, 0.75, 0.75, 0.75, 1, 1] // } // ] const auc = getAuc(curve); console.log(auc); // 0.6875 ``` ## [API Documentation](https://mljs.github.io/roc-multiclass/) ## References - Bewick, V., Cheek, L., & Ball, J. (2004). Statistics review 13: receiver operating characteristic curves. Critical care, 8(6), 1-5. - Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine learning, 45(2), 171-186. - [https://en.wikipedia.org/wiki/Receiver_operating_characteristic](https://en.wikipedia.org/wiki/Receiver_operating_characteristic). ## License [MIT](./LICENSE) [npm-image]: https://img.shields.io/npm/v/ml-roc-multiclass.svg [npm-url]: https://www.npmjs.com/package/ml-roc-multiclass [ci-image]: https://github.com/mljs/roc-multiclass/workflows/Node.js%20CI/badge.svg?branch=master [ci-url]: https://github.com/mljs/roc-multiclass/actions?query=workflow%3A%22Node.js+CI%22 [codecov-image]: https://img.shields.io/codecov/c/github/mljs/roc-multiclass.svg [codecov-url]: https://codecov.io/gh/mljs/roc-multiclass [download-image]: https://img.shields.io/npm/dm/ml-roc-multiclass.svg [download-url]: https://www.npmjs.com/package/ml-roc-multiclass