# Thesis_Code_Automatic-Modulation-Classification **Repository Path**: helloMRDJ/Thesis_Code_Automatic-Modulation-Classification ## Basic Information - **Project Name**: Thesis_Code_Automatic-Modulation-Classification - **Description**: Implementation of various Machine Learning Classifiers for my thesis 'Machine Learning Techniques for Automatic Modulation Classification' - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-02 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README This repo contains the implementation of various Machine Learning classifiers to solve the task of Digital Modulation Classification. data_feature-engineering.ipynb does feature engineering on raw data- dataset taken from https://www.deepsig.io/datasets; contains 8 classes of digital modulation- '8PSK', 'BPSK', 'CPFSK', 'GFSK', 'PAM4', 'QAM16', 'QAM64', 'QPSK'. Dependencies- Python v3.6.3, NumPy v1.14.0, TensorFlow v1.4.0, scikit-learn v0.19.1, matplotlib v2.1.0, xgboost v0.6 K Nearest Neighbors, Support Vector Classifiers, Decision Trees, Decision Tree Ensembles and Extreme Gradient Boosting were implemented using scikit-learn. Deep Neural Networks (DNNs)- fully connected and Convolutional Neural Networks (CNNs) were implemented using TensorFlow.