# deepcommunitydetection **Repository Path**: dyjch/deepcommunitydetection ## Basic Information - **Project Name**: deepcommunitydetection - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README PyDCD: A Deep Learning-Based Community Detection Software in Python for Large-scale Networks ========================================================= DCD (Deep learning-based Community Detection) is designed to apply state-of-the-art deep learning technologies to identify communities for large-scale networks. Compared with existing community detection methods, DCD offers a unified solution for many variations of community detection problems. ![DCD logo](pics/frameworks.png) DCD provides implementation of 4 community detection algorithms, 1 evaluation, and two types of networked data: | Function | Description | Input | Output | |------------|-------------------------------|-----------|---------| | K-Means | Baseline (1) | -Network node file
-Network edge file
-Performance evaluation flag
-K | | | MM | Baseline (2) | -Network node file
-Network edge file | | | DCD | DCD | -Network node file
-Network edge file
-Performance evaluation flag
-Node attribute flag
-K | | | Random network Generation | Generate random network datasets | -Network size
-Community size
-Probability of edges within communities
-Probability of edges between communities
-Directed network flag |
Network node file
Network edge file | | Load Dataset | Load Facebook, citation or user-provided datasets | Dataset name| Facebook dataset
[Citation] dataset | [Citation]: https://snap.stanford.edu/data/cit-HepTh.html Requirements ------------ Generally, the library is compatible with Python 3.6/3.7.
NetworkX >= 2.3 Installation ------------ ### From PIP ### ```bash pip3 install pydcd ``` Quick Start ----------- Here is a quick-start example. ```bash Python 3.7.3 (default, January 01 2020, 09:00:00) [Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from pydcd import DCD, KM, MM >>> kmeans_detector = KM(10) >>> kmeans_detector.km_detect_community('fb_nodes.txt','fb_edges.txt','N') # N means no evaluation >>> mm_detector = MM() >>> mm_detector.mm_detect_community('fb_nodes.txt','fb_edges.txt','Y') # Y means showing evaluation >>> dcd_detector = DCD() # using default setting for initialization, or >>> dcd_detector = DCD(128,64,128,50) # set the neurons for three hidden layers and the output dimension >>> dcd_detector.dcd_detect_community('fb_nodes_withattributes.txt','fb_edges.txt','Y','N') # Y means nodes having attributes >>> dcd_detector.dcd_detect_community('fb_nodes_noattributes.txt','fb_edges.txt','N','N') # The first N means nodes no attributes >>> rn = RandNet() # to generate random networks >>> rn.generate_random_networks(1000,100,0.2,0.05) # undirected network with 1000 nodes and 100 communities >>> rn.generate_random_networks(1000,100,0.2,0.05,directed=True) # directed network with 1000 nodes and 100 communities ``` Input Examples ------------------ node file without attributes: ```bash node_id_1 node_id_2 node_id_3 ... node_id_n ``` node file with attributes: ```bash node_id_1 value_for_attribute_1 value_for_attribute_2 ... value_for_attribute_m node_id_2 value_for_attribute_1 value_for_attribute_2 ... value_for_attribute_m node_id_3 value_for_attribute_1 value_for_attribute_2 ... value_for_attribute_m ... node_id_n value_for_attribute_1 value_for_attribute_2 ... value_for_attribute_m ``` edge file: ```bash node_id_1 node_id_2 ... node_id_i node_id_j ... node_id_m node_id_k ``` Development Team ---------------- PyDCD is developed by Prof. [Kunpeng Zhang], Prof. [Shaokun Fan], and Prof. [Bruce Golden]. [Kunpeng Zhang]: http://www.terpconnect.umd.edu/~kpzhang/ [Shaokun Fan]: https://business.oregonstate.edu/users/shaokun-fan [Bruce Golden]: http://scholar.rhsmith.umd.edu/bgolden/home Citation -------- If you find this useful for your research or development, please cite our work.