# TensorRT-Alpha
**Repository Path**: ctpactwangke/TensorRT-Alpha
## Basic Information
- **Project Name**: TensorRT-Alpha
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: GPL-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-10-28
- **Last Updated**: 2025-10-28
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# TensorRT-Alpha
[](https://developer.nvidia.com/cuda-toolkit-archive)
[](https://developer.nvidia.com/nvidia-tensorrt-8x-download)
[](https://releases.ubuntu.com/18.04/)
[](https://www.microsoft.com/)
English | [简体中文](README.md)
## Visualization
## Introduce
This repository provides accelerated deployment cases of deep learning CV popular models, and cuda c supports dynamic-batch image process, infer, decode, NMS.
There are two ways to compile model(pth or onnx):
pth -> trt
coming soon.
pth -> onnx -> trt:
- [i]. According to the network disk provided by TensorRT-Alpha, download ONNX directly. [weiyun](https://share.weiyun.com/3T3mZKBm) or [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)
- [ii]. Follow the instructions provided by TensorRT-Alpha to manually export ONNX from the relevant python source code framework.
## Update
- 2023.01.01 🔥 update yolov3, yolov4, yolov5, yolov6
- 2023.01.04 🍅 update yolov7, yolox, yolor
- 2023.01.05 🎉 update u2net, libfacedetection
- 2023.01.08 🚀 The whole network is the first to support yolov8
- 2023.01.20 🍏 update efficientdet, pphunmanseg
- 2023.12.09 🍁 update yolov8-pose
- 2023.12.19 🍉 update yolov8-seg
- 2023.12.27 💖 update yolonas
## Installation
The following environments have been tested:
Ubuntu18.04
- cuda11.3
- cudnn8.2.0
- gcc7.5.0
- tensorrt8.4.2.4
- opencv3.x or 4.x
- cmake3.10.2
Windows10
- cuda11.3
- cudnn8.2.0
- visual studio 2017 or 2019 or 2022
- tensorrt8.4.2.4
- opencv3.x or 4.x
Python environment(Optional)
```bash
# install miniconda first
conda create -n tensorrt-alpha python==3.8 -y
conda activate tensorrt-alpha
git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha
pip install -r requirements.txt
```
Installation Tutorial:
- [Install For Ubuntu18.04](Install_For_Ubuntu18.04/Install_For_Ubuntu18.04.md)
- [Docker For Linux](docker/README.md)
## Quick Start
### Ubuntu18.04
set your TensorRT_ROOT path:
```bash
git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/cmake
vim common.cmake
# set var TensorRT_ROOT to your path in line 20, eg:
# set(TensorRT_ROOT /home/feiyull/TensorRT-8.4.2.4)
```
start to build project:
For example:[yolov8](yolov8/README.md)
## Onnx
At present, more than 30 models have been implemented, and some onnx files of them are organized as follows:
| model | tesla v100(32G) |weiyun |google driver |
:-: | :-: | :-: | :-: |
|[yolov3](yolov3/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolov4](yolov4/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolov5](yolov5/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolov6](yolov6/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolov7](yolov7/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolov8](yolov8/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolox](yolox/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolor](yolor/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[u2net](u2net/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[libfacedetection](libfacedetection/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[facemesh](facemesh/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[pphumanseg](pphumanseg/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[efficientdet](efficientdet/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolov8-pose](yolov8-pose/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolov8-seg](yolov8-seg/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|[yolonas](yolonas/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)|
|more...(🚀: I will be back soon!) | | |
🍉We will test the time of all models on tesla v100 and A100! Now let's preview the performance of yolov8n on RTX2070m(8G):
| model | video resolution | model input size |GPU Memory-Usage |GPU-Util|
:-: | :-: | :-: | :-: | :-: |
|yolov8n|1920x1080|8x3x640x640|1093MiB/7982MiB| 14%|
cost time per frame
## Some Precision Alignment Renderings Comparison
yolov8n : Offical( left ) vs Ours( right )
yolov7-tiny : Offical( left ) vs Ours( right )
yolov6s : Offical( left ) vs Ours( right )
yolov5s : Offical( left ) vs Ours( right )
yolov5s : Offical( left ) vs Ours( right )
libfacedetection : Offical( left ) vs Ours( right topK:2000)
## Citation
```bash
@misc{FeiYull_TensorRT-Alpha,
author = {FeiYull},
title = {TensorRT-Alpha},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {https://github.com/FeiYull/tensorrt-alpha}
}
```