# TensorRT-Alpha **Repository Path**: ctpactwangke/TensorRT-Alpha ## Basic Information - **Project Name**: TensorRT-Alpha - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-28 - **Last Updated**: 2025-10-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TensorRT-Alpha
[![Cuda](https://img.shields.io/badge/CUDA-11.3-%2376B900?logo=nvidia)](https://developer.nvidia.com/cuda-toolkit-archive) [![](https://img.shields.io/badge/TensorRT-8.4.2.4-%2376B900.svg?style=flat&logo=tensorrt)](https://developer.nvidia.com/nvidia-tensorrt-8x-download) [![](https://img.shields.io/badge/ubuntu-18.04-orange.svg?style=flat&logo=ubuntu)](https://releases.ubuntu.com/18.04/) [![](https://img.shields.io/badge/windows-10-blue.svg?style=flat&logo=windows)](https://www.microsoft.com/) English | [简体中文](README.md)

## Visualization


## Introduce This repository provides accelerated deployment cases of deep learning CV popular models, and cuda c supports dynamic-batch image process, infer, decode, NMS.
There are two ways to compile model(pth or onnx):
pth -> trt coming soon.
pth -> onnx -> trt: - [i]. According to the network disk provided by TensorRT-Alpha, download ONNX directly. [weiyun](https://share.weiyun.com/3T3mZKBm) or [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing) - [ii]. Follow the instructions provided by TensorRT-Alpha to manually export ONNX from the relevant python source code framework.
## Update - 2023.01.01 🔥 update yolov3, yolov4, yolov5, yolov6 - 2023.01.04 🍅 update yolov7, yolox, yolor - 2023.01.05 🎉 update u2net, libfacedetection - 2023.01.08 🚀 The whole network is the first to support yolov8 - 2023.01.20 🍏 update efficientdet, pphunmanseg - 2023.12.09 🍁 update yolov8-pose - 2023.12.19 🍉 update yolov8-seg - 2023.12.27 💖 update yolonas ## Installation The following environments have been tested:
Ubuntu18.04 - cuda11.3 - cudnn8.2.0 - gcc7.5.0 - tensorrt8.4.2.4 - opencv3.x or 4.x - cmake3.10.2
Windows10 - cuda11.3 - cudnn8.2.0 - visual studio 2017 or 2019 or 2022 - tensorrt8.4.2.4 - opencv3.x or 4.x
Python environment(Optional) ```bash # install miniconda first conda create -n tensorrt-alpha python==3.8 -y conda activate tensorrt-alpha git clone https://github.com/FeiYull/tensorrt-alpha cd tensorrt-alpha pip install -r requirements.txt ```
Installation Tutorial: - [Install For Ubuntu18.04](Install_For_Ubuntu18.04/Install_For_Ubuntu18.04.md)
- [Docker For Linux](docker/README.md)
## Quick Start ### Ubuntu18.04 set your TensorRT_ROOT path: ```bash git clone https://github.com/FeiYull/tensorrt-alpha cd tensorrt-alpha/cmake vim common.cmake # set var TensorRT_ROOT to your path in line 20, eg: # set(TensorRT_ROOT /home/feiyull/TensorRT-8.4.2.4) ``` start to build project: For example:[yolov8](yolov8/README.md) ## Onnx At present, more than 30 models have been implemented, and some onnx files of them are organized as follows:
| model | tesla v100(32G) |weiyun |google driver | :-: | :-: | :-: | :-: | |[yolov3](yolov3/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolov4](yolov4/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolov5](yolov5/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolov6](yolov6/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolov7](yolov7/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolov8](yolov8/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolox](yolox/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolor](yolor/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[u2net](u2net/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[libfacedetection](libfacedetection/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[facemesh](facemesh/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[pphumanseg](pphumanseg/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[efficientdet](efficientdet/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolov8-pose](yolov8-pose/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolov8-seg](yolov8-seg/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |[yolonas](yolonas/README.md)| |[weiyun](https://share.weiyun.com/3T3mZKBm)| [google driver](https://drive.google.com/drive/folders/1-8phZHkx_Z274UVqgw6Ma-6u5AKmqCOv?usp=sharing)| |more...(🚀: I will be back soon!) | | |
🍉We will test the time of all models on tesla v100 and A100! Now let's preview the performance of yolov8n on RTX2070m(8G):
| model | video resolution | model input size |GPU Memory-Usage |GPU-Util| :-: | :-: | :-: | :-: | :-: | |yolov8n|1920x1080|8x3x640x640|1093MiB/7982MiB| 14%|
无法显示图片时显示的文字
cost time per frame


## Some Precision Alignment Renderings Comparison
无法显示图片时显示的文字
yolov8n : Offical( left ) vs Ours( right )


无法显示图片时显示的文字
yolov7-tiny : Offical( left ) vs Ours( right )


无法显示图片时显示的文字
yolov6s : Offical( left ) vs Ours( right )


无法显示图片时显示的文字
yolov5s : Offical( left ) vs Ours( right )


无法显示图片时显示的文字
yolov5s : Offical( left ) vs Ours( right )


无法显示图片时显示的文字
libfacedetection : Offical( left ) vs Ours( right topK:2000)


## Citation ```bash @misc{FeiYull_TensorRT-Alpha, author = {FeiYull}, title = {TensorRT-Alpha}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {https://github.com/FeiYull/tensorrt-alpha} } ```